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It is shown analytically and numerically that the suppression of chaos may be effectively achieved
by applying a high-frequency parametric force to a chaotic dynamical system. Such a periodic
nonresonant force may decrease or even completely eliminate chaos. Taking the Duffing oscillator
as a concrete but rather general example, an analytical approach is elaborated to demonstrate
how such a suppression of chaos may be understood in the framework of the effective “averaged”
nonlinear equation for a slowly varying component of the oscillation amplitude. As follows from our
numerical simulations, the suppression of chaos may be observed not only at large amplitudes of the
parametric force but also at smaller amplitudes, showing a decay of the leading Lyapunov exponent

within certain amplitude-frequency “windows.”
PACS number(s): 05.45.+b, 43.50.+y, 46.90.+s

I. INTRODUCTION

Dynamical chaos is a very interesting nonlinear phe-
nomenon, and it has been detected in a large number of
nonlinear systems of various physical nature. In prac-
tice, however, this effect is usually undesirable, because
it restricts the operating range of many electronic and
mechanic devices. One of the main methods to control
or completely eliminate chaotic dynamics is based on the
idea of the stabilization of unstable periodic orbits em-
bedded within a strange attractor. This may be achieved
by making a small time-dependent perturbation in the
form of feedback to an accessible system parameter (see,
e.g., [1-5]). Another way is to apply an external force
(see, e.g., Refs. [6-10]). The use of a resonant response
of chaotic systems to continuous ezternal periodic per-
turbations to suppress chaos in dynamical systems has
been proposed in [6, 7], and then considered numerically
[7], analytically [7, 8], and even experimentally [9]. In
particular, as shown in [7], a small parametric pertur-
bation of the nonlinear Duffing oscillator [11] showing
chaotic dynamics may reduce or even completely sup-
press chaos. The basic idea proposed in {7, 9] is to apply
a parametric force at some resonant frequency (related
to the frequency of the primary chaos-inducing periodic
force). “Laminar” phases in the system dynamics are
then observed of increasing duration up to complete reg-
ularization of the motion at ezact resonance.

The results displayed in [7, 9] do show an efficient sup-
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pression of chaos at resonant conditions, the most effec-
tive suppression being observed at the main resonance.
It is clear, however, that such a condition is rather spe-
cial and, strictly speaking, two external forces of different
origin applied to a dynamical system are of incommen-
surate frequencies. The combined effect of two periodic
(external and parametric) forces with different frequen-
cies of the same order has recently been analyzed [12] (see
also [13]) by using the Melnikov method [14, 15] showing
a rather complicated set of bifurcations. However, it is
well known that a parametric force of a high frequency
(HF) may drastically change the dynamics of the phase
trajectories of an averaged nonlinear system, and this
effect may lead, e.g., to a stabilization of certain types
of dynamical regimes. A typical and famous example is
the stabilization of a reverse pendulum by parametrically
forced oscillations of its pivot [16], and the similar effect
may also be achieved by a direct force of large amplitude
[17]. Dynamical stabilization has its analog in nonlin-
ear systems with distributed parameters supporting, in
particular, novel types of kink solitons [18-21].

The purpose of the present paper is to show analyti-
cally and numerically that the suppression of chaos may
be achieved efficiently by applying a nonresonant para-
metric force of high frequency. The main idea of the
method we propose is based on the observation that para-
metric perturbations can change the stability properties
of elliptic or hyperbolic points on the phase plane of
an averaged dynamical system. This property is rather
general, and the parametrically induced suppression of
chaos, therefore, may be achieved in dynamical systems
of various physical origin. The method itself does not re-
quire any real-time measurement of the system dynamics
nor any real-time calculations and this, as we hope, will
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allow to control fast systems (e.g., faster ones than ac-
cessible for the method proposed by Ott, Grebogi, and
Yorke [1]). For presenting the basic ideas of the method,
we take the well-known Duffing oscillator driven by an ex-
ternal (direct) periodic force which produces chaos and
apply a HF parametric force of arbitrary amplitude.
The paper is organized as follows. In Sec. II we present
the model and, by using an asymptotic expansion to split
slow and fast oscillations generated by the parametric
force, we derive an effective (“averaged”) Duffing equa-
tion for the slowly varying oscillation component. This
averaged equation shows how chaotic dynamics may be
suppressed. We discuss such a suppression in Sec. III by
means of the Melnikov function and by numerical simu-
lations. Finally, conclusions are drawn in Sec. TV.

II. “AVERAGED” EQUATION

Let us consider the driven and damped Duffing oscil-
lator with a parametric force

F — a(t)r + Bz = —y& + F cos(wt), (1)
where, for simplicity,
a(t) = a[l + ecos(Qt)], (2)

Q being the frequency of the parametric force which is
assumed to be large in comparison with the direct driving
frequency w.

Considering the parametric force as rapidly oscillat-
ing, we apply an analytical method based on separation
of different time scales. The basic idea to split fast and
slow variables is not new, and the well-known example
is a stabilization of the reverse pendulum by oscillations
of its suspension point (see [16]). However, our analyt-
ical method to derive an effective equation for a slowly
varying oscillation component allows us to get all the
corrections in a self-consistent way by using asymptotic
expansions (see also [22] where a similar approach has
been recently applied to a soliton problem).

In order to derive the equation of motion for the slowly
varying dynamics, we decompose the function z(t) into a
sum of slowly and rapidly varying parts, i.e.,

r=X +& (3)

The function £(t) stands for fast oscillations around the
slowly varying envelope function X(t), and the mean
value of £(t) during an oscillation period is assumed to
be zero so that (z) = X. Our aim is to derive an ef-
fective equation for the function X. The rapidly varying
parametric force generates the oscillations with the large
frequency €2, so that we may look for the rapidly oscil-
lating component of the solution of Egs. (1) and (2) in
the form of the Fourier series

& = €[Acos(2t) + Bsin(Qt))
+€[C cos(29Qt) + Dsin(2Qt)] + - - -, (4)

where the coefficients A, B, ... are assumed to be slowly
varying on the time scale ~ Q~!. Substituting the ex-
pressions (3) and (4) into Egs. (1) and (2) and collecting
the coefficients in front of the different harmonics, we
obtain an infinite set of coupled nonlinear equations,

3
X -aX +8X%+ EezﬁX(A2+Bz+ )

—%aezA = —yX + F cos(wt), (5)

(—Q%A+ QB + A) — aA +~(A + QB)
+B(BX*A+332A4% +.-) = aX, (6)

(—Q%B — QA + B) — aB +v(B - QA)
: 1
+B8(3X%B + %8A2B +.0) = §ozC', (7)

(—4Q%C +2Q-D + C) — aC + v(C + 2QD)

+B(BX?C + 2eXA+ ) = %A. (8)

(—49°D - 2QC + D) — aD + ~v(D — 2QC)
+8(3X?D +3¢XAB +---) = %B, (9)

and the similar equations for the coeflicients in front of
the higher-order harmonics. To proceed further, we note
that Egs. (6)—(9) allow an asymptotic expansion method
for the functions A4, B, ... . If the parameter (2 is assumed
to be large, the term —24 in Eq. (6) may be compen-
sated only by the term aX if one assumes A4 ~ Q2.
From Eq. (7), which has no perturbation-induced right-
hand side (rhs), it simply follows that the largest term
to compensate —§22B is of order of QA. Such a simple
consideration allows us to find asymptotic expansions for
the coefficients A, B,... in the form of series in the pa-
rameter 27! as follows:

ay as bl bz
A=t Begtgt
y C1 dy
C:§+‘..’ :§+...' (1())

Substituting Eq. (10) into Egs. (6)—(9) and equating the
terms of the same orders in §2, we find

a; = —(IX, (11)
ay = by + iy — aay + 38X %a; + v(ay + by), (12)
by = —a; — vyay, (13)

bz = A(‘lg —+ 51 —_ abl + 3BX2b1 + ’Y(bl —_ az), (14)

1
€1 = —5a,

1
dy=—=b 15
8 1 8 1 ( )

and so on. The parameter § = €/Q is assumed to be up
to the order O(1), but all the results are valid also for
the case § < 1. The expansions (10) allow us to find
the coefficients in each order of €2, and all the corrections
are determined by algebraic relations. For example, a; is
determined by Eq. (12) through b; which, in turn, may
be found from Eq. (13) as a function of a, i.e., through
the slowly varying part X. This statement is valid for all
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coefficients of the asymptotic expansion: The coefficients
are found through algebraic relations and not as solutions
of differential equations.

Applying the expansion (10) to Eq. (5) for the slowly
varying component X, we find the result

.. 1 a
X—aX+,6X3—§a52 (a1+9—22+-~)
a M+>
02 Q4

- -—'yX + F cos(wt). (16)

3 2
V2pex

From here it is quite obvious how to get the first, second,
and subsequent orders of the approximation to determine
the averaged equation.

In the first-order approximation only the term ~ é2a,
contributes, so that Eq. (16) yields

X —aX + X% = —yX + F cos(wt), 17

where
- 1 .,
a=all- 5(15 . (18)

Equations (17) and (18) take into account an effective
contribution of the rapidly varying parametric force to
the “average” nonlinear dynamics and this contribution
might become large when § = O(1). Thus, the dynamics
of the Duffing oscillator with a rapidly varying paramet-
ric forcing may be described by a renormalized Duffing
equation (17) and the corrections to it are of the order
€2/Q%. In fact, applying our expansions to get the correc-
tions of the next order approximation, we can show that
this result is still valid up to the terms of order O(22),
and the corresponding coefficients of the Duffing equation
are renormalized to be

2
a=a [1 — %a&z + %(a + ’YZ)] ) (19)
= 3a26?
ﬂ=ﬂ(1+v), (20)
- a?8?
=7 (1- 5 ) (21)

where the coefficients &, 3, and 4 have the same meaning
as those in the standard Duffing equation (1) with e = 0.

III. SUPPRESSION OF CHAOS

As we have shown in the preceding section, the av-
eraged dynamics of the Duffing oscillator subjected to
the rapidly varying parametric perturbations may be de-
scribed by the Duffing equation again but with renormal-
ized parameters. This result is rather nontrivial and it
simply means that we may apply all the results known
for that equation to analyze the suppression of chaos. In
particular, the threshold of chaos, which is defined by the
value of the ac driving force F producing the appearance
of a strange attractor in the Poincaré sections, may be

obtained by means of the classical Melnikov method [14]
(see also [15, 23, 24]). The method consists of evaluating
the distance A(to) between stable and unstable manifolds
which, in this case, form a homoclinic loop. In fact, in the
presence of dissipation the homoclinic loop is destroyed,
but it may be recovered by adding a force, provided that
the force amplitude exceeds a certain critical value. To
find the critical value, one should check if the function
A(to) changes its sign for some to.

The Melnikov function A(tg) is defined by the relation

A(to) = /_ "t bo(t)R(¢o(t), do(t),t +10),  (22)

where ¢q(t) is the homoclinic orbit evaluated at the ab-
sence of perturbations (i.e., without losses and force),
and R is the rhs of Eq. (17). We should note, however,
that the Melnikov method actually deals with the occur-
rence of transversal homoclinic points, but it does not
characterize the global dynamics of the system, so that,
in general, the actual threshold observed in practice be-
comes “visible” a little bit above the Melnikov criterion
(see, e.g., [24] for more discussions of that point).

For the Duffing oscillator, the Melnikov function is
(see, e.g., Ref. [15])

/
Alto) = wa\/gsech (%) sin(wto) + 47;; sy

and the condition to prevent A(ts) from changing the
sign is

> %sech (27%) . (24)

The main conclusion which follows from Eq. (24) is ez-
ponential dependence of the rhs on @. This means that if
& becomes smaller, then the condition (24) may be easily
fulfilled by a not very large change in «, and suppression
of chaos should be observed.

Crossing of stable and unstable manifolds, as is deter-
mined by the Melnikov function, gives only the criterion
for the onset of chaotic motion in the limit of low dissipa-
tion when the transient times are much longer than the
time scale of the system dynamics. The critical values
of the parameters allowing a chaotic motion are roughly
given by the criterion that the averaged double-well po-
tential changes to a single-well potential (see, e.g., [25]
and discussions therein). This condition yields the crit-
ical dependence € ~ /29 which separates chaotic and
regular motion for the averaged dynamics.

To support the idea formuated above, we have per-
formed computer simulations of the system described by
Egs. (1) and (2). The differential equation was inte-
grated by the Runge-Kutta-Fehlberg (4) and (5) method
with stepsize control [26]. We extracted the Lyapunov
characteristic exponents using a time-discrete decompo-
sition method with Householder orthonormalization as
proposed in [27, 28]. To increase the performance of the
method, we modified the algorithm in order to simulate
the continuous character of the investigated system by
using the exponential exp(M) of the calculated Jacobian
M rather than the linearized form (1 + M). This allows
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us to increase the time steps between matrix calculations
by about 3-5 without any loss of precision and time of
convergence. (As is well known for the Duffing oscil-
lator, there is only one relevant Lyapunov exponent A.
The second exponent is due to the excitation and it al-
ways equals zero, while the third one is determined by
dissipation: vy = — 3. A;.)

The relevant Lyapunov exponent versus ¢ is shown in
Figs. 1 and 2. The important conclusion which follows
from such dependences is twofold. First, the Lyapunov
exponent vanishes for large values of ¢ and thus a reg-
ular motion is actually recovered. Second, a set of the
so-called windows where the Lyapunov exponent is suffi-
ciently suppressed or even becomes negative is observed
in the simulation. We have checked such a fact for other
values of the system parameters. Such windows also de-
pend on the frequency of the parametric force. This phe-
nomenon can clearly be seen in Fig. 3 where we have
presented different types of the system dynamics defined
by the Lyapunov dimension for the same parameters as
in Fig. 1. The approximate dependence ¢ ~ € for the
threshold of chaos is reproduced rather well by the sim-
ulations.

To display how the oscillations become regular, we
show in Figs. 1(b)-1(f) and 2(b)-2(f) the temporal evo-
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FIG. 2. The same as in Fig. 1 but for ¥ = 0.30. In
contrast to Fig. 1 the corresponding attractor is asymmetric
for € < 2.5 [see (b) and (c)]. Again, a set of windows of the
chaos suppression is observed.

lution of the coordinate x(t) described by the Duffing
oscillator and its power spectrum. Those shown in Figs.
1(b),(c) and 2(b),(c) are the system oscillations at € = 0
which are regularized, e.g., for ¢ = 15 as is depicted in
Figs. 1(e) and 2(e), respectively. We have also performed
calculations in the regime of higher Lyapunov exponents,
e.g., for v = 0.2, which did not show principal differences
in comparison with the case y = 0.4 presented above. So
we can say that the characteristic features observed for
this kind of dynamics, namely, the suppression of chaos
by a HF parametric force for large € and also within cer-
tain amplitude-frequency windows, is rather common for
different parameter sets.

However, we should note that at very large values of ¢
the regularized averaged dynamics may become chaotic
again. Indeed, as follows from our Eq. (19), which de-
termines the most critical parameter for the threshold of
chaos, the higher-order correction acts with the sign +,
so that it may help to recover the chaotic dynamics again
due to the driving effect of the HF parametric modula-
tion itself. As we have checked numerically, this occurs
at @ = 1.0fore > 0.9, at Q =3 fore > 13, at 2 = 5.0
for € > 33, and so on. Nevertheless, the windows where
the chaos is suppressed or completely eliminated are wide
enough to be of practical importance.

Finally we would like to emphasize that our numerical
simulations show rather good agreement with the anal-
ysis presented even for not very large values of € (see,
e.g., Fig. 3 ). At the same time we have also checked the
resonant case £ = 1.0 for which, as shown in Ref. [7].
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FIG. 3. Different types of the system dynamics at the
same parameters as in Fig. 1. The regions are chosen in a
way that white corresponds to a Lyapunov dimension of 1, but
all chaotic regimes (with dimension larger than 2) are shown
in halftone. The solid line denotes the value of € = v/2Q above
which suppression of chaos is expected. The chaotic behavior
at low Q) is explained in text.

much smaller values of € (e.g., € = 0.1) are necessary to
suppress chaos.

IV. CONCLUSIONS

In conclusion, we have shown both analytically and
numerically that suppression of chaos may be efficiently
achieved by applying a periodic nonresonant paramet-
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